EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN.

نویسندگان

  • Mrinal Samanta
  • Dai Iwakiri
  • Teru Kanda
  • Tadaatsu Imaizumi
  • Kenzo Takada
چکیده

Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are nonpolyadenylated, untranslated RNAs, exist most abundantly in latently EBV-infected cells, and are expected to show secondary structures with many short stem-loops. Retinoic acid-inducible gene I (RIG-I) is a cytosolic protein that detects viral double-stranded RNA (dsRNA) inside the cell and initiates signaling pathways leading to the induction of protective cellular genes, including type I interferons (IFNs). We investigated whether EBERs were recognized by RIG-I as dsRNA. Transfection of RIG-I plasmid induced IFNs and IFN-stimulated genes (ISGs) in EBV-positive Burkitt's lymphoma (BL) cells, but not in their EBV-negative counterparts or EBER-knockout EBV-infected BL cells. Transfection of EBER plasmid or in vitro-synthesized EBERs induced expression of type I IFNs and ISGs in RIG-I-expressing, EBV-negative BL cells, but not in RIG-I-minus counterparts. EBERs activated RIG-I's substrates, NF-kappaB and IFN regulatory factor 3, which were necessary for type I IFN activation. It was also shown that EBERs co-precipitated with RIG-I. These results indicate that EBERs are recognized by RIG-I and activate signaling to induce type I IFN in EBV-infected cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epstein-Barr Virus-Encoded RNAs: Key Molecules in Viral Pathogenesis

The Epstein-Barr virus (EBV) is known as an oncogenic herpesvirus that has been implicated in the pathogenesis of various malignancies. EBV-encoded RNAs (EBERs) are non-coding RNAs expressed abundantly in latently EBV-infected cells. Herein, I summarize the current understanding of the functions of EBERs, including the interactions with cellular factors through which EBERs contribute to EBV-med...

متن کامل

Characterization of Rotavirus RNAs That Activate Innate Immune Signaling through the RIG-I-Like Receptors

In mammalian cells, the first line of defense against viral pathogens is the innate immune response, which is characterized by induction of type I interferons (IFN) and other pro-inflammatory cytokines that establish an antiviral milieu both in infected cells and in neighboring uninfected cells. Rotavirus, a double-stranded RNA virus of the Reoviridae family, is the primary etiological agent of...

متن کامل

5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I.

The ATPase retinoid acid-inducible gene (RIG)-I senses viral RNA in the cytoplasm of infected cells and subsequently activates cellular antiviral defense mechanisms. RIG-I recognizes molecular structures that discriminate viral from host RNA. Here, we show that RIG-I ligands require base-paired structures in conjunction with a free 5'-triphosphate to trigger antiviral signaling. Hitherto unavai...

متن کامل

Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like recept...

متن کامل

Influenza A Virus PA Antagonizes Interferon-β by Interacting with Interferon Regulatory Factor 3

The influenza A virus (IAV) can be recognized by retinoic acid-inducible gene I (RIG-I) to activate the type I interferon response and induce antiviral effects. The virus has evolved several strategies to evade the innate immune response, including non-structural protein 1 (NS1) and its polymerase subunits. The mechanism by which NS1 inhibits interferon-β (IFN-β) is well understood, whereas the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 25 18  شماره 

صفحات  -

تاریخ انتشار 2006